0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 7 ms)
↳10 CpxRNTS
↳11 InliningProof (UPPER BOUND(ID), 64 ms)
↳12 CpxRNTS
↳13 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 1 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 91 ms)
↳18 CpxRNTS
↳19 IntTrsBoundProof (UPPER BOUND(ID), 8 ms)
↳20 CpxRNTS
↳21 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 314 ms)
↳24 CpxRNTS
↳25 IntTrsBoundProof (UPPER BOUND(ID), 8 ms)
↳26 CpxRNTS
↳27 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳28 CpxRNTS
↳29 IntTrsBoundProof (UPPER BOUND(ID), 363 ms)
↳30 CpxRNTS
↳31 IntTrsBoundProof (UPPER BOUND(ID), 29 ms)
↳32 CpxRNTS
↳33 FinalProof (⇔, 0 ms)
↳34 BOUNDS(1, n^1)
a__f(X, X) → a__f(a, b)
a__b → a
mark(f(X1, X2)) → a__f(mark(X1), X2)
mark(b) → a__b
mark(a) → a
a__f(X1, X2) → f(X1, X2)
a__b → b
a__f(X, X) → a__f(a, b) [1]
a__b → a [1]
mark(f(X1, X2)) → a__f(mark(X1), X2) [1]
mark(b) → a__b [1]
mark(a) → a [1]
a__f(X1, X2) → f(X1, X2) [1]
a__b → b [1]
a__f(X, X) → a__f(a, b) [1]
a__b → a [1]
mark(f(X1, X2)) → a__f(mark(X1), X2) [1]
mark(b) → a__b [1]
mark(a) → a [1]
a__f(X1, X2) → f(X1, X2) [1]
a__b → b [1]
a__f :: a:b:f → a:b:f → a:b:f a :: a:b:f b :: a:b:f a__b :: a:b:f mark :: a:b:f → a:b:f f :: a:b:f → a:b:f → a:b:f |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
none
(c) The following functions are completely defined:
mark
a__b
a__f
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
a => 0
b => 1
a__b -{ 1 }→ 1 :|:
a__b -{ 1 }→ 0 :|:
a__f(z, z') -{ 1 }→ a__f(0, 1) :|: z' = X, X >= 0, z = X
a__f(z, z') -{ 1 }→ 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2
mark(z) -{ 2 }→ a__f(a__f(mark(X1'), X2'), X2) :|: X2' >= 0, X1' >= 0, X2 >= 0, z = 1 + (1 + X1' + X2') + X2
mark(z) -{ 2 }→ a__f(a__b, X2) :|: z = 1 + 1 + X2, X2 >= 0
mark(z) -{ 2 }→ a__f(0, X2) :|: z = 1 + 0 + X2, X2 >= 0
mark(z) -{ 1 }→ a__b :|: z = 1
mark(z) -{ 1 }→ 0 :|: z = 0
a__b -{ 1 }→ 0 :|:
a__b -{ 1 }→ 1 :|:
a__b -{ 1 }→ 1 :|:
a__b -{ 1 }→ 0 :|:
a__f(z, z') -{ 1 }→ a__f(0, 1) :|: z' = X, X >= 0, z = X
a__f(z, z') -{ 1 }→ 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2
mark(z) -{ 2 }→ a__f(a__f(mark(X1'), X2'), X2) :|: X2' >= 0, X1' >= 0, X2 >= 0, z = 1 + (1 + X1' + X2') + X2
mark(z) -{ 3 }→ a__f(1, X2) :|: z = 1 + 1 + X2, X2 >= 0
mark(z) -{ 2 }→ a__f(0, X2) :|: z = 1 + 0 + X2, X2 >= 0
mark(z) -{ 3 }→ a__f(0, X2) :|: z = 1 + 1 + X2, X2 >= 0
mark(z) -{ 2 }→ 1 :|: z = 1
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 2 }→ 0 :|: z = 1
a__b -{ 1 }→ 1 :|:
a__b -{ 1 }→ 0 :|:
a__f(z, z') -{ 1 }→ a__f(0, 1) :|: z' >= 0, z = z'
a__f(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
mark(z) -{ 2 }→ a__f(a__f(mark(X1'), X2'), X2) :|: X2' >= 0, X1' >= 0, X2 >= 0, z = 1 + (1 + X1' + X2') + X2
mark(z) -{ 3 }→ a__f(1, z - 2) :|: z - 2 >= 0
mark(z) -{ 3 }→ a__f(0, z - 2) :|: z - 2 >= 0
mark(z) -{ 2 }→ a__f(0, z - 1) :|: z - 1 >= 0
mark(z) -{ 2 }→ 1 :|: z = 1
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 2 }→ 0 :|: z = 1
{ a__b } { a__f } { mark } |
a__b -{ 1 }→ 1 :|:
a__b -{ 1 }→ 0 :|:
a__f(z, z') -{ 1 }→ a__f(0, 1) :|: z' >= 0, z = z'
a__f(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
mark(z) -{ 2 }→ a__f(a__f(mark(X1'), X2'), X2) :|: X2' >= 0, X1' >= 0, X2 >= 0, z = 1 + (1 + X1' + X2') + X2
mark(z) -{ 3 }→ a__f(1, z - 2) :|: z - 2 >= 0
mark(z) -{ 3 }→ a__f(0, z - 2) :|: z - 2 >= 0
mark(z) -{ 2 }→ a__f(0, z - 1) :|: z - 1 >= 0
mark(z) -{ 2 }→ 1 :|: z = 1
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 2 }→ 0 :|: z = 1
a__b -{ 1 }→ 1 :|:
a__b -{ 1 }→ 0 :|:
a__f(z, z') -{ 1 }→ a__f(0, 1) :|: z' >= 0, z = z'
a__f(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
mark(z) -{ 2 }→ a__f(a__f(mark(X1'), X2'), X2) :|: X2' >= 0, X1' >= 0, X2 >= 0, z = 1 + (1 + X1' + X2') + X2
mark(z) -{ 3 }→ a__f(1, z - 2) :|: z - 2 >= 0
mark(z) -{ 3 }→ a__f(0, z - 2) :|: z - 2 >= 0
mark(z) -{ 2 }→ a__f(0, z - 1) :|: z - 1 >= 0
mark(z) -{ 2 }→ 1 :|: z = 1
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 2 }→ 0 :|: z = 1
a__b: runtime: ?, size: O(1) [1] |
a__b -{ 1 }→ 1 :|:
a__b -{ 1 }→ 0 :|:
a__f(z, z') -{ 1 }→ a__f(0, 1) :|: z' >= 0, z = z'
a__f(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
mark(z) -{ 2 }→ a__f(a__f(mark(X1'), X2'), X2) :|: X2' >= 0, X1' >= 0, X2 >= 0, z = 1 + (1 + X1' + X2') + X2
mark(z) -{ 3 }→ a__f(1, z - 2) :|: z - 2 >= 0
mark(z) -{ 3 }→ a__f(0, z - 2) :|: z - 2 >= 0
mark(z) -{ 2 }→ a__f(0, z - 1) :|: z - 1 >= 0
mark(z) -{ 2 }→ 1 :|: z = 1
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 2 }→ 0 :|: z = 1
a__b: runtime: O(1) [1], size: O(1) [1] |
a__b -{ 1 }→ 1 :|:
a__b -{ 1 }→ 0 :|:
a__f(z, z') -{ 1 }→ a__f(0, 1) :|: z' >= 0, z = z'
a__f(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
mark(z) -{ 2 }→ a__f(a__f(mark(X1'), X2'), X2) :|: X2' >= 0, X1' >= 0, X2 >= 0, z = 1 + (1 + X1' + X2') + X2
mark(z) -{ 3 }→ a__f(1, z - 2) :|: z - 2 >= 0
mark(z) -{ 3 }→ a__f(0, z - 2) :|: z - 2 >= 0
mark(z) -{ 2 }→ a__f(0, z - 1) :|: z - 1 >= 0
mark(z) -{ 2 }→ 1 :|: z = 1
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 2 }→ 0 :|: z = 1
a__b: runtime: O(1) [1], size: O(1) [1] |
a__b -{ 1 }→ 1 :|:
a__b -{ 1 }→ 0 :|:
a__f(z, z') -{ 1 }→ a__f(0, 1) :|: z' >= 0, z = z'
a__f(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
mark(z) -{ 2 }→ a__f(a__f(mark(X1'), X2'), X2) :|: X2' >= 0, X1' >= 0, X2 >= 0, z = 1 + (1 + X1' + X2') + X2
mark(z) -{ 3 }→ a__f(1, z - 2) :|: z - 2 >= 0
mark(z) -{ 3 }→ a__f(0, z - 2) :|: z - 2 >= 0
mark(z) -{ 2 }→ a__f(0, z - 1) :|: z - 1 >= 0
mark(z) -{ 2 }→ 1 :|: z = 1
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 2 }→ 0 :|: z = 1
a__b: runtime: O(1) [1], size: O(1) [1] a__f: runtime: ?, size: O(n1) [2 + z + z'] |
a__b -{ 1 }→ 1 :|:
a__b -{ 1 }→ 0 :|:
a__f(z, z') -{ 1 }→ a__f(0, 1) :|: z' >= 0, z = z'
a__f(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
mark(z) -{ 2 }→ a__f(a__f(mark(X1'), X2'), X2) :|: X2' >= 0, X1' >= 0, X2 >= 0, z = 1 + (1 + X1' + X2') + X2
mark(z) -{ 3 }→ a__f(1, z - 2) :|: z - 2 >= 0
mark(z) -{ 3 }→ a__f(0, z - 2) :|: z - 2 >= 0
mark(z) -{ 2 }→ a__f(0, z - 1) :|: z - 1 >= 0
mark(z) -{ 2 }→ 1 :|: z = 1
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 2 }→ 0 :|: z = 1
a__b: runtime: O(1) [1], size: O(1) [1] a__f: runtime: O(1) [2], size: O(n1) [2 + z + z'] |
a__b -{ 1 }→ 1 :|:
a__b -{ 1 }→ 0 :|:
a__f(z, z') -{ 3 }→ s :|: s >= 0, s <= 1 * 0 + 1 * 1 + 2, z' >= 0, z = z'
a__f(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
mark(z) -{ 4 }→ s' :|: s' >= 0, s' <= 1 * 0 + 1 * (z - 1) + 2, z - 1 >= 0
mark(z) -{ 5 }→ s'' :|: s'' >= 0, s'' <= 1 * 0 + 1 * (z - 2) + 2, z - 2 >= 0
mark(z) -{ 5 }→ s1 :|: s1 >= 0, s1 <= 1 * 1 + 1 * (z - 2) + 2, z - 2 >= 0
mark(z) -{ 2 }→ a__f(a__f(mark(X1'), X2'), X2) :|: X2' >= 0, X1' >= 0, X2 >= 0, z = 1 + (1 + X1' + X2') + X2
mark(z) -{ 2 }→ 1 :|: z = 1
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 2 }→ 0 :|: z = 1
a__b: runtime: O(1) [1], size: O(1) [1] a__f: runtime: O(1) [2], size: O(n1) [2 + z + z'] |
a__b -{ 1 }→ 1 :|:
a__b -{ 1 }→ 0 :|:
a__f(z, z') -{ 3 }→ s :|: s >= 0, s <= 1 * 0 + 1 * 1 + 2, z' >= 0, z = z'
a__f(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
mark(z) -{ 4 }→ s' :|: s' >= 0, s' <= 1 * 0 + 1 * (z - 1) + 2, z - 1 >= 0
mark(z) -{ 5 }→ s'' :|: s'' >= 0, s'' <= 1 * 0 + 1 * (z - 2) + 2, z - 2 >= 0
mark(z) -{ 5 }→ s1 :|: s1 >= 0, s1 <= 1 * 1 + 1 * (z - 2) + 2, z - 2 >= 0
mark(z) -{ 2 }→ a__f(a__f(mark(X1'), X2'), X2) :|: X2' >= 0, X1' >= 0, X2 >= 0, z = 1 + (1 + X1' + X2') + X2
mark(z) -{ 2 }→ 1 :|: z = 1
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 2 }→ 0 :|: z = 1
a__b: runtime: O(1) [1], size: O(1) [1] a__f: runtime: O(1) [2], size: O(n1) [2 + z + z'] mark: runtime: ?, size: O(n1) [2·z] |
a__b -{ 1 }→ 1 :|:
a__b -{ 1 }→ 0 :|:
a__f(z, z') -{ 3 }→ s :|: s >= 0, s <= 1 * 0 + 1 * 1 + 2, z' >= 0, z = z'
a__f(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
mark(z) -{ 4 }→ s' :|: s' >= 0, s' <= 1 * 0 + 1 * (z - 1) + 2, z - 1 >= 0
mark(z) -{ 5 }→ s'' :|: s'' >= 0, s'' <= 1 * 0 + 1 * (z - 2) + 2, z - 2 >= 0
mark(z) -{ 5 }→ s1 :|: s1 >= 0, s1 <= 1 * 1 + 1 * (z - 2) + 2, z - 2 >= 0
mark(z) -{ 2 }→ a__f(a__f(mark(X1'), X2'), X2) :|: X2' >= 0, X1' >= 0, X2 >= 0, z = 1 + (1 + X1' + X2') + X2
mark(z) -{ 2 }→ 1 :|: z = 1
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 2 }→ 0 :|: z = 1
a__b: runtime: O(1) [1], size: O(1) [1] a__f: runtime: O(1) [2], size: O(n1) [2 + z + z'] mark: runtime: O(n1) [17 + 6·z], size: O(n1) [2·z] |